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ObjectivesObjectives

Investigate  and demonstrate an AirInvestigate  and demonstrate an Air--toto--AirAir--toto--Ground hybrid RF/FSO System, Ground hybrid RF/FSO System, 
promising a broadband promising a broadband “See Thru Clouds”“See Thru Clouds”, using , using ultraultra--shortshort--pulsed pulsed laserlaser link with link with 
time/frequency diversity provided by time/frequency diversity provided by ““Fractal Wavelet ModulationFractal Wavelet Modulation”” to increase the to increase the 
hybrid link availability and average data rate.hybrid link availability and average data rate.

Clouds  &  TurbulenceClouds  &  Turbulence
Data Data 
LinkLink

TransmitterTransmitter

UltraUltra--short Pulsed short Pulsed 
LaserLaser

Data Data 
LinkLink

ReceiverReceiver
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AntiAnti--correlation under Adverse Weathercorrelation under Adverse Weather

High High 
AttenuationAttenuation

Slight Slight 
AttenuationAttenuation

RF RF 

Slight Slight 
AttenuationAttenuation

Severe Severe 
AttenuationAttenuation

FSOFSO

Cloud/FogCloud/Fog RainRain

• M. Kavehrad, " A New Diversity Technique for Interference-Limited Microwave Digital Radios," Canadian Conf. on 
Elect. and Computer Engineering, Ottawa, Ontario, September 1990.
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Low Altitude Clouds

100 m – 3.2 km

Cumulus 
Stratocumulus

Stratus

Mid Altitude Clouds

3.2 km – 6.5 km

Altocumulus
Altostratus

Nimbostratus

High Altitude Clouds

6.5 km ++

Cirrus
Cirrostratus

Typical Optical thickness for 1 Km
1.150

Basics on CloudsBasics on Clouds
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Basics on CloudsBasics on Clouds

Optical thickness τ refers to total optical path length: 
τ = Kscat . L, where L is the physical length of channel (cloud chamber).
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•• Channel modeling is performed using MonteChannel modeling is performed using Monte--Carlo Ray Carlo Ray 
Tracing Simulations.Tracing Simulations.

•• Each photon / particle Each photon / particle (water droplet)(water droplet) interaction is interaction is 
governed by the Mie Theory.governed by the Mie Theory.

•• Photons are either absorbed or scattered. Direction of the Photons are either absorbed or scattered. Direction of the 
scattered photons are governed by the  scattering phase scattered photons are governed by the  scattering phase 
function.function.

•• Trajectory of a photon in a dispersive channel is tracked Trajectory of a photon in a dispersive channel is tracked 
from transmitter to receiver.from transmitter to receiver.

•• Temporal dispersion is due to variations in the path Temporal dispersion is due to variations in the path 
length for different photons; length for different photons; 

•• Spatial dispersion is due to offSpatial dispersion is due to off--axis propagation.axis propagation.

Clouds Clouds Channel ModelingChannel Modeling
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• A common measure to characterize a communications channel; 
delay spread (Td) is defined as the time it takes for the channel 
parameters to de-correlate with respect to previous channel state. 
It is measured using the correlation power profile.

• Channel Coherence Bandwidth ≅ 1 /Td.

• Delay spread is proportional to receive aperture size, channel 
length and optical thickness.

Clouds Channel Delay Spread / BandwidthClouds Channel Delay Spread / Bandwidth
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• Integrating theoretical bandwidth results with statistical cloud
information helps estimate the practically available bandwidth in 
cloud obscured channels.

• To evaluate cloud coverage, we use data obtained from the 
International Satellite Cloud Climatology Project (ISCCP) D1 
database.

• The ISCCP database contains cloud information including 
percentage of spatial coverage and optical thickness for the entire 
globe. In this database, the globe is divided into 6596 equal size 
cells, each of which is approximately the area of 2.5˚ longitude ×
2.5˚ latitude.

Bandwidth  AvailabilityBandwidth  Availability
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Low Clouds ~ PDF of Optical Thickness; Low Clouds ~ PDF of Optical Thickness; ττ
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Low Clouds ~  BW  PDFLow Clouds ~  BW  PDF



11

Cloud Type
Average τ Average 

Bandwidth
Percentage 
Coverage

Cumulus 2.0521 5.55E+10 0.39384
Stratocumulus 8.7927 3.00E+09 0.411088
Stratus 53.262 1.77E+07 0.091564
Cumulus 1.6227 1.51E+11 0.061854
Stratocumulus 10.829 3.99E+09 0.02734
Stratus 56.228 2.03E+07 0.014314
Altocumulus 1.8171 1.97E+11 0.165674
Altostratus 11.732 2.96E+09 0.205437
Nimbostratus 70.439 2.00E+07 0.127153
Altocumulus 1.8703 4.79E+11 0.26428
Altostratus 11.661 3.72E+09 0.158026
Nimbostratus 56.157 3.20E+07 0.07943
Cirrus 1.6255 5.27E+11 0.452862
Cirrostratus 12.178 9.46E+08 0.345364
convective 54.112 6.31E+06 0.201774
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• Substantial bandwidth is available for communications during 
typical meteorological conditions, even in the presence of clouds. 

• Results can vary widely for various locations on the globe, 
especially areas where low clouds with large physical thickness 
values are dominant (e.g., Stratus clouds).

• Available bandwidth can vary widely within the same class of 
clouds between tens of KHz to several GHz.

• Appropriate transmission schemes is needed to accommodate such 
a wide variations.

Clouds Coherence Bandwidth Clouds Coherence Bandwidth Results SummaryResults Summary
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• Transmission spectral efficiency is kept over a broad range of rate-
bandwidth ratios using a fixed transmitter configuration.

• Redundant copies of the transmitted data are provided across the
time-frequency plane.

• A form of multi-rate communication diversity.

Time

q[5]q[4]q[3]q[2]q[1]q[0]

q[1] q[2]q[0]

q[2] q[3]q[1]q[0] q[4] q[5]

Fr
eq

ue
nc

y q[11]q[10]q[9]q[8]q[7]q[6]

Increased Link Availability using Fractal Modulation on  Increased Link Availability using Fractal Modulation on  
UltraUltra--short Laser Pulsesshort Laser Pulses
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•• UltraUltra--fast switching times and ultrafast switching times and ultra--high high 
transmit powers enable communication transmit powers enable communication 
capabilities that far exceed anything available capabilities that far exceed anything available 
today.today.

•• A 100 fs pulse at 100 mJ would produce a A 100 fs pulse at 100 mJ would produce a 
peak power of 1 Terawatt. At 2 Giga pulse per peak power of 1 Terawatt. At 2 Giga pulse per 
second, this is 500 watts of average power.second, this is 500 watts of average power.

•• Research into high speed ultraResearch into high speed ultra--short pulsed short pulsed 
lasers and their interaction with matter lasers and their interaction with matter 
indicate there may be opportunities using indicate there may be opportunities using 
extremely short pulseextremely short pulse--shaped techniques to shaped techniques to 
condition the molecular interactions in order condition the molecular interactions in order 
to reduce absorption. Reduced loss of laser to reduce absorption. Reduced loss of laser 
energy due to atmospheric attenuators would energy due to atmospheric attenuators would 
be a vital element in the expansion of FSO be a vital element in the expansion of FSO 
based communications.based communications.

•• UltraUltra--short pulses shaped through signal short pulses shaped through signal 
processing can help penetration thru clouds.processing can help penetration thru clouds.

UltraUltra--short Pulse Laser Technologyshort Pulse Laser Technology



Modulated Meyer’s WaveletsModulated Meyer’s Wavelets
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Meyer’s WaveletsMeyer’s Wavelets
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Time Domain ∫ −= )'()'(')( tetthdtte inout
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Pulse Shaping by Linear FilteringPulse Shaping by Linear Filtering
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Pulse shaping apparatus
F FFF
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Meyer wavelet of order 4
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Goal: N rates over a single laser beam

Approach: Generate N waveforms and modulate each at a 
different data rate.

Data stream

ChannelMode-locked 
pulsed laser

Waveform 
generator Modulator...

MultiMulti--Rate EncoderRate Encoder
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• After the pulse shaper using optical filters 
and conventional optical gates/switches? 

Data Stream

Modulator...

Where and How to modulate with data?

shaped pulse

mask

input pulse

ultrafast optical material 

shaped pulse

mask

input pulse

ultrafast optical material 

optical filtersoptical filters

• Within the pulse shaper using 
new ultra-fast optical 
materials.

MultiMulti--Rate EncoderRate Encoder
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Goal: Retrieve N rates from a single laser beam

Approach: Optical matched filtering plus spectral filtering

Data stream

Channel
Data streams

separation
Matched
filtering

Opt.-to-Elec. 
conversion...

MultiMulti--Rate DecoderRate Decoder
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MultiMulti--Rate DecoderRate Decoder
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• Use simulation test bed to evaluate system performance

• Integrate results from pulse shaping in the system evaluations

• Simulation parameters:
Modulation scheme: Multi-Rate Multi-Wavelength
Rates: 5.33 Gbps, 2.67 Gbps, 1.33 Gbps, 667 Mbps
Total Rate: 10 Gbps
Pulse Shapes: Ultra-short Meyer Wavelets 
Channel: 1 Km, varying optical thickness 

System PerformanceSystem Performance
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BER System Performance BER System Performance -- NRZNRZ
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BER System Performance BER System Performance -- RZRZ
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• Substantial bandwidth is available for communication during 
typical meteorological conditions, even in the presence of clouds. 

• Appropriate modulation schemes have to be adopted to handle the 
wide variations in channel conditions.

• Wavelet multi-rate system exhibits a better performance in 
comparison to conventional single rate systems.

• Short-pulsed systems offer a higher resilience against cloud 
obscurations.

SummarySummary
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